

Welcome to locationd’s documentation!

Contents:

	Introduction
	Vocabulary

	Architectural Overview

	Privacy & Access Control

	CLI
	Snap-Specific Command Names

	Testing Scenarios

	API

	Hacking
	Building the code

	Running the tests

	Coverage

	Code style

	Thread and address sanitizer

	Updating symbols file

	ABI compliance test

Indices and tables

	Index

	Module Index

	Search Page

Introduction

locationd is a central hub for multiplexing access to
positioning subsystems available via hard- and software. It provides a
client API offering positioning capabilities to applications and other
system components, abstracting away the details of individual
positioning solutions.

Vocabulary

To make the remainder of this documentation as easily understandable
as possible, we start over with introducing some vocabulary:

	Engine: Responsible for handling input from multiple positioning
subsystems and maintaining the state of the overall system. Think
about it like the heart of the system.

	Provider: A positioning subsystem that feeds into the positioning
engine. Common examples are a GPS provider or a network-based
positioning provider.

	Service: The point of entry for applications and services that would
like to receive position data.

	Session: In order to receive position information, every application
or service has to create a session with the location Service.
Session creation is subject to security mediation and contextual
prompting.

	Update: An update is a timestamped entity to a certain type of data.

	WGS84 [http://en.wikipedia.org/wiki/World_Geodetic_System]: The coordinate system that is used throughout the entire location subsystem.

Architectural Overview

The high-level architecture of the service is shown in the following diagram:

[image: High-level architectural overview]

In this diagram, the configuration of the engine refers to:

	The current state of any satellite-based positioning subsystems. Can either be off or on.

	The current state of reporting facilities responsible for harvesting wifi and cell id measurements together with location information and sending them off to remote services. Can either be off or on.

	The overall state of the engine. Can either be off, on or active.

The Service takes this configuration and exposes it to client
applications. In addition, mainly for debugging purposes, the set of
currently visible satellites (if any) is maintained and exposed to
privileged client applications. The service supports multiple different satellite-based
positioning operating in parallel. The following GNSSs are known:

	Beidou: People’s Republic of China’s regional system, currently limited to Asia and the West Pacific.

	Galileo: A global system being developed by the European Union and other partner countries, planned to be operational by 2014 (and fully deployed by 2019).

	Glonass: Russia’s global navigation system. Fully operational worldwide.

	GPS: Fully operational worldwide.

	Compass: People’s Republic of China’s global system, planned to be operational by 2020.

	IRNSS: India’s regional navigation system, planned to be operational by 2014, covering India and Northern Indian Ocean.

	QZSS: Japanese regional system covering Asia and Oceania.

Privacy & Access Control

Location information is highly privacy relevant. For this reason, the
locationd is deeply integrated with AppArmor and Ubuntu’s
overall trust infrastructure. Every incoming session request is
validated and if in doubt, the user is asked to explicitly grant trust
to the application requesting access to positioning
information. Please see [@ref com::ubuntu::location::service::PermissionManager]
for further details.

In addition, the locationd allows for selectively adjusting the
accuracy and reporting setup of the location Engine to provide further
fine-grained control over the exposed data to user. Within this setup,
a user is able to entirely disable all positioning.

CLI

locationd offers a command-line interface for controlling
and monitoring the service. The following commands are available:

	list: Lists all provider implementations known to the service.

	monitor: Connects to a locationd instance, monitoring its activity.

	provider: Executes a known provider implementation in an out-of-process sandbox.

	run: Executes the service.

	status: Queries the status of a service instance.

	test: Executes runtime tests against known provider implementations.

For all of the commands, an exit status of 0 indicates success. An exit status of 1 indicates
an error. Normal output goes to stdout, while all errors/warnings are output to stderr.

Snap-Specific Command Names

If you are using the cli from a snap (snap install locationd --channel edge), the commands will
be wrapped up for you in a convenient way, following the pattern locationd.$COMMAND. With that, if
you want to check on the status of the service, simply run:

$ locationd.status

Testing Scenarios

For testing purposes, it is often handy to inspect position/velocity/heading estimates on the command line.
The monitor command helps here. It connects to the service, starts the positioning engine and outputs
position estimates to stdout until it receives a SIGTERM.

API

Location service exposes a DBus API to interact with a service instance.
We do not expose introspection for the API, yet. Instead, we provide a C++ client API that
abstracts away from the underlying IPC mechanism.

A client application then uses the API to establish a session with a
service, register observers to receive updates and to control the
status of updates. The following snippet illustrates basic usage of the client API:

auto service = location::connect_to_service(...);
auto session = service->create_session_for_criteria(location::Criteria{});

session->updates().position.changed().connect([this](const location::Update<location::Position>& pos)
{
 std::cout << pos << std::endl;
});

session->updates().heading.changed().connect([this](const location::Update<location::units::Degrees>& heading)
{
 std::cout << pos << std::endl;
});

session->updates().velocity.changed().connect([this](const location::Update<location::units::MetersPerSecond>& velocity)
{
 std::cout << pos << std::endl;
});

session->updates().position_status = location::Service::Session::Updates::Status::enabled;
session->updates().heading_status = location::Service::Session::Updates::Status::enabled;
session->updates().velocity_status = location::Service::Session::Updates::Status::enabled;

Hacking

Building the code

By default, the code is built in release mode. To build a debug version, use

$ mkdir builddebug
$ cd builddebug
$ cmake -DCMAKE_BUILD_TYPE=debug ..
$ make

For a release version, use -DCMAKE_BUILD_TYPE=release

Running the tests

$ make
$ make test

Note that “make test” alone is dangerous because it does not rebuild
any tests if either the library or the test files themselves need
rebuilding. It’s not possible to fix this with cmake because cmake cannot
add build dependencies to built-in targets. To make sure that everything
is up-to-date, run “make” before running “make test”!

Coverage

To build with the flags for coverage testing enabled and get coverage:

$ mkdir buildcoverage
$ cd buildcoverage
$ cmake -DCMAKE_BUILD_TYPE=coverage
$ make
$ make test
$ make coverage

Unfortunately, it is not possible to get 100% coverage for some files,
mainly due to gcc’s generation of two destructors for dynamic and non-
dynamic instances. For abstract base classes and for classes that
prevent stack and static allocation, this causes one of the destructors
to be reported as uncovered.

There are also issues with some functions in header files that are
incorrectly reported as uncovered due to inlining, as well as
the impossibility of covering defensive assert(false) statements,
such as an assert in the default branch of a switch, where the
switch is meant to handle all possible cases explicitly.

If you run a binary and get lots of warnings about a “merge mismatch for summaries”,
this is caused by having made changes to the source that add or remove code
that was previously run, so the new coverage output cannot sensibly be merged
into the old coverage output. You can get rid of this problem by running

$ make clean-coverage

This deletes all the .gcda files, allowing the merge to (sometimes) succeed again.
If this doesn’t work either, the only remedy is to do a clean build.

If lcov complains about unrecognized lines involving ‘=====’,
you can patch geninfo and gcovr as explained here:

https://bugs.launchpad.net/gcovr/+bug/1086695/comments/2

Code style

We use a format tool that fixes a whole lot of issues
regarding code style. The formatting changes made by
the tool are generally sensible (even though they may not be your
personal preference in all cases). If there is a case where the formatting
really messes things up, consider re-arranging the code to avoid the problem.
The convenience of running the entire code base through the pretty-printer
far outweighs any minor glitches with pretty printing, and it means that
we get consistent code style for free, rather than endlessly having to
watch out for formatting issues during code reviews.

As of clang-format-3.7, you can use

// clang-format off
void unformatted_code ;
// clang-format on

to suppress formatting for a section of code.

To format specific files:

${CMAKE_BINARY_DIR}/tools/formatcode x.cpp x.h

If no arguments are provided, formatcode reads stdin and writes
stdout, so you can easily pipe code into the tool from within an
editor. For example, to reformat the entire file in vi (assuming
${CMAKE_BINARY_DIR}/tools is in your PATH):

1G!Gformatcode

To re-format all source and header files in the tree:

$ make formatcode

Thread and address sanitizer

Set SANITIZER to “thread” or “address” to build with the
corresponding sanitizer enabled.

Updating symbols file

To easily spot new/removed/changed symbols in the library, the debian
package maintains a .symbols file that lists all exported symbols
present in the library .so. If you add new public symbols to the library,
it’s necessary to refresh the symbols file, otherwise the package will
fail to build. The easiest way to do that is using bzr-builddeb:

$ bzr bd -- -us -uc -j8 # Don't sign source package or changes file, 8 compiles in parallel
$ # this will exit with an error if symbols file isn't up-to-date
$ cd ../build-area/location-service-[version]
$./obj-[arch]/tools/symbol_diff

This creates a diff of the symbols in /tmp/symbols.diff.
(The demangled symbols from the debian build are in ./new_symbols.)

Review any changes in /tmp/symbols.diff. If they are OK:

$ cd -
$ patch -p0 < /tmp/symbols.diff

ABI compliance test

To use this, install abi-compliance-checker package from the archives.

You can use abi-compliance-checker to test whether a particular build
is ABI compatible with another build. The tool does some source-level
analysis in addition to checking library symbols, so it catches things
that are potentially dangerous, but won’t be picked up by just looking
at the symbol table.

Assume you have built devel in src/devel, and you have a later build
in src/mybranch and want to check that mybranch is still compatible.
To run the compliance test:

$ cd src
$ abi-compliance-checker -lib libunity-scopes.so -old devel/build/test/abi-compliance/abi.xml -new mybranch/build/test/abi-compliance/abi.xml

The script will take about two minutes to run. Now point your browser at

src/compat_reports/libunity-scopes.so/[version]_to_[version]/compat_report.html

The report provides a nicely layed-out page with all the details.

Index

Debugging

Location not working? Here’s how to debug.

Layers

Test in OSMTouch (QML app using Qt API) before testing in webapps or
webbrowser app. Different results? File a bug where it doesn’t
work. Same result of no location? Next step.

Check that stack works with dummy provider

Edit /etc/init/ubuntu-location-provider.override to start
location-serviced with just the dummy provider; this should
work. Doesn’t work? File a bug against location-service. Works? Reset
config to defaults and try the next thing.

Hardware GPS breaking all of location-service

GPS provider is built-in into location-service and might break all of
it if it goes south (working on splitting it out); try enabling only
the HERE provider on the location-serviced command-line and see if
that works. Works? File a bug against location-service. Doesn’t work?
Move on.

HERE test

To test whether the low-level HERE stack gets a location, put
http://people.canonical.com/~lool/espoo-cli on your phone (will be
included along HERE bits in the future) and run with:

chmod a+x espoo-cli
GLOG_logtostderr=1 GLOG_v=100 LD_LIBRARY_PATH=/custom/vendor/here/location-provider/lib/arm-linux-gnueabihf ./espoo-cli 5

NB: 5 is the number of location updates after which the tool exits;
updates should come in at approx 15s interval. Output looks like:

I1101 21:30:01.285964 4403 cli.cpp:117] Requested number of updates is 2
I1101 21:30:01.299002 4403 cli.cpp:133] Starting location updates
I1101 21:30:01.301888 4403 cli.cpp:141] Starting GLib main loop
I1101 21:30:11.304612 4403 cli.cpp:158] Location: tstamp=1414891811 lat=xyz long=foo hor. acc.=2569 alt=nan vert. acc.=nan tech=cell
I1101 21:30:11.306061 4403 cli.cpp:170] Remaining updates: 1
I1101 21:30:26.736821 4403 cli.cpp:158] Location: tstamp=1414891826 lat=xyz long=foo hor. acc.=2824 alt=nan vert. acc.=nan tech=cell
I1101 21:30:26.738348 4403 cli.cpp:148] Stopping location updates

Low-level HERE stack works but location-serviced with just HERE
provider doesn’t work? File a bug against espoo projet (HERE) and/or
location-service. Low-level HERE stack doesn’t work? Move on

location-service and espoo-service debug

Collect some debug data by editing /etc/init/ubuntu-espoo-service.conf
and /etc/init/ubuntu-location-service.override and changing the start
sequence to add some env vars:

export GLOG_v=200

before the exec. Reboot, and start some app. You should have some log
files under /var/log/upstart/ubuntu-espoo-service.log and
/var/log/upstart/ubuntu-location-service.log to attach to a bug
report; e.g. a working espoo log looks like this:

WARNING: Logging before InitGoogleLogging() is written to STDERR
I1105 16:30:10.221474 1620 provider.cpp:568] StartPositionUpdates
I1105 16:30:10.224901 1620 provider.cpp:122] Successfully started position updates.
I1105 16:30:10.228739 1620 provider.cpp:596] StartVelocityUpdates
I1105 16:30:13.046851 1621 provider.cpp:83] Received location: Position(lat: Coordinate(12.34 deg), lon: Coordinate(12.34 deg), alt: Coordinate(nan m), hor.acc.: 1430 m, ver.acc.: nan m)

No position there? check connectivity API works by running:

cd /tmp
wget http://people.ubuntu.com/~lool/connectivity
GLOG_v=200 GLOG_logtostderr=1 ./connectivity

you should see something like:

I1105 16:47:26.431466 11140 cached_radio_cell.cpp:160] (mcc: 123, mnc: 2, lac: 1234, id: 123456, asu: 1)
I1105 16:47:26.533818 11140 connectivity.cpp:47] Is wifi enabled: true
I1105 16:47:26.533963 11140 connectivity.cpp:48] Is wifi hw enabled: true
I1105 16:47:26.534010 11140 connectivity.cpp:49] Is wwan enabled: true
I1105 16:47:26.534050 11140 connectivity.cpp:50] Is wwan hw enabled: true
I1105 16:47:26.534442 11140 connectivity.cpp:122] umts(mcc: 123, mnc: 2, lac: 1234, id: 123456, asu: 1)
I1105 16:47:26.534633 11140 connectivity.cpp:155] (bssid: 12:12:12:12:12:12, ssid: xyz, last seen: 1415224046, mode: Mode::infrastructure, frequency: 2442, strength: 63)
I1105 16:47:26.534828 11140 connectivity.cpp:155] (bssid: 12:12:12:12:12:12, ssid: boing, last seen: 1415224046, mode: Mode::infrastructure, frequency: 2467, strength: 57)

Also, please attach output of /usr/share/ofono/scripts/list-modems > list-modems-output.txt
Please note that the command might take ~1 minute to complete.

TODO: document dbus-monitor / d-feet capturing of client / system traffic with snooping config.

Service Daemon and CLI

The location service offers a daemon executable and a corresponding
command-line interface for interacting with it. The daemon does not
necessarily require root privileges, but might so depending on your
configuration.

Run the following command to receive an overview of the arguments to
the daemon:

ubuntu-location-serviced --help

An example invocation of the daemon, configuring a GPS provider that
relies on the Android HAL to talk to the chipset, exposing the service
on the system DBus instance:

ubuntu-location-serviced --bus system --provider gps::Provider

The cli allows for querying properties of a running service instance, e.g.:

ubuntu-location-serviced-cli --bus system --get --property is_online

Configuring an Out-Of-Process Provider

If you want to run a provider out of process, the daemon executable
allows you to do so by instantiating a so-called remote provider. The
following invocation of the service tries to connect to the provider
instance described by the given unique DBus name and path.

ubuntu-location-serviced \
 --bus system \
 --provider remote::Provider \
 --remote::Provider::bus=system \
 --remote::Provider::name=com.ubuntu.location.provider.Gps \
 --remote::Provider::path=/

Please note that the service allows for decorating provider names to
uniquely identify per provider configuration options and to allow for
loading more than one provider of a certain kind. The following
configuration configures two remote providers, one relying on GPS
(decorated with @gps) and another one relying on network-based
positioning (decorated with @network):

ubuntu-location-serviced \
 --bus system \
 --provider remote::Provider@gps \
 --remote::Provider@gps::bus=system \
 --remote::Provider@gps::name=com.ubuntu.location.provider.Gps \
 --remote::Provider@gps::path=/ \
 --provider remote::Provider@network \
 --remote::Provider@network::bus=system \
 --remote::Provider@network::name=com.ubuntu.location.provider.Network \
 --remote::Provider@network::path=/

Manual Testplan

[TOC]

While the automatic test suite of the location service is
comprehensive and covers large parts of the functionality of the
service itself, we still provide an additional level of acceptance
testing covering the entire location stack/experience as a part of
this document.

Dependents/Clients

	qtubuntu-sensors

	Qt/QML applications:
	Browser

	osmTouch

Test Plan

This test plan is not supposed to be complete; use it to guide your
manual testing so you don’t miss big functional areas that are part of
the component; also this should be used as guideline to inspire the
exploratory testing which should be adapted smartly based on the real
content of a MP.

Please note that if you’re testing the GPS provider, the location
service relies on GPS hardware to obtain a location fix. For that, it
might be required that you execute the manual steps listed before
close to a window or ideally outside, with good satellite visibility
conditions.

Note: It can take up to 15 minutes for the GPS device to get a lock, due to lack of assisted GPS

	Install latest image on phone

	Install freshly built MPs that are needed for landing

Depending on the default configuration of location-service on the
image, you may skip parts of this test plan. E.g. if GPS hardware is
disabled, skip this part. You can see which providers are enabled by
looking at the list of providers on the location-serviced command-line
(ps fauxw | grep location-service, then look at the --provider
flags).

Dummy provider

This tests forces location-service to use only the dummy provider;
this providers a baseline test for the app to trust-store to
location-service path.

	phablet-shell into the phone:
	sudo service ubuntu-location-service stop && sudo /usr/bin/ubuntu-location-serviced --bus system --provider dummy::Provider --dummy::Provider::ReferenceLocationLat=48.857503 --dummy::Provider::ReferenceLocationLon=2.295072

	As phablet, start the trust store again (it stops when location-service is stopped) with: start ubuntu-location-service-trust-stored

	Ensure that all AP tests for the webbrowser pass as expected

	Point the browser to maps.google.com (alternatively: here.com, maps.bing.fr).

	Request centering the map on current position and observe if it works correctly (should show the Eiffel tower)

	Install osmTouch from the app store

	Launch osmTouch and check if it centers on the Eiffel tower.

	Install a maps webapp such as HERE or Google Maps webapp from the app store

	Launch maps webapp and check if it centers on the Eiffel tower.

GPS Test Plan

This applies only if GPS provider is enabled.

	(If applicable: Remember to add the silo you are testing)

	sudo apt-get install ubuntu-location-service-tests

	If you want to send off crowdsourced information, i.e., information about visible wifis and visible radio cells for the obtained location fixes to Mozilla’s location service and our own instance:
	sudo GLOG_v=40 GLOG_logtostderr=1 GPS_TEST_ENABLE_HARVESTING_DURING_TESTS=1 /usr/bin/uls-tests/gps_provider_test --gtest_filter=*.time_to_first_fix_cold_start_without_supl_benchmark_requires_hardware

	If you ‘’‘don’t’‘’ want to send off crowdsourced information:
	sudo GLOG_v=40 GLOG_logtostderr=1 /usr/bin/uls-tests/gps_provider_test --gtest_filter=*.time_to_first_fix_cold_start_without_supl_benchmark_requires_hardware

	The test will output a lot of diagnostic information to the
terminal and will take ~30 minutes. If satellite visibility is
limited, it can take even longer. The test will automatically
report success or failure.

Preliminary AGPS Test Plan

Does not apply to Krillin

Please note that the Krillin GPS chipset driver and its integration
within Ubuntu does not support vanilla AGPS (i.e., SUPL) right
now. For that, this test case is irrelevant for Krillin and is likely
to fail.

This applied only if GPS provider and some other provider (giving
_A_ssistance) are enabled.

	Add the silo.

	sudo apt-get install ubuntu-location-service-tests

	Obtain a (rough) location estimate for your current location on Google maps.

	Make sure to replace INSERT_ESTIMATE_HERE with the respective
values obtained from Google maps.

	If you want to send off crowdsourced information, i.e., information
about visible wifis and visible radio cells for the obtained
location fixes to Mozilla’s location service and our own instance:
	sudo GLOG_v=40 GLOG_logtostderr=1 GPS_TEST_ENABLE_HARVESTING_DURING_TESTS=1 GPS_TEST_REF_LAT=INSERT_ESTIMATE_HERE GPS_TEST_REF_LON=INSERT_ESTIMATE_HERE /usr/bin/uls-tests/gps_provider_test --gtest_filter=*.time_to_first_fix_cold_start_with_supl_benchmark_requires_hardware

	If you ‘’‘don’t’‘’ want to send off crowdsourced information:
	sudo GLOG_v=40 GLOG_logtostderr=1 GPS_TEST_REF_LAT=INSERT_ESTIMATE_HERE GPS_TEST_REF_LON=INSERT_ESTIMATE_HERE /usr/bin/uls-tests/gps_provider_test --gtest_filter=*.time_to_first_fix_cold_start_with_supl_benchmark_requires_hardware

	The test will output a lot of diagnostic information to the
terminal and will take ~10 minutes or less. The test will
automatically report success or failure.

Espoo / HERE provider

This applies only if the Espoo / HERE remote provider is enabled. This
provider should be enabled by default and may either work standalone
as the only provider or as an assistance for the GPS hardware to lock.

	Add the silo; special exception for lxc-android-config: see https://wiki.ubuntu.com/Touch/Testing/lxc-android-config

	If noted, deploy an updated custom tarball:
	Download the tarball under /tmp (‘’‘NOT’‘’ under /)

	Unpack there: cd /tmp; sudo tar xvf custom-vendor-here-*.tar.xz

	Remove older bits: sudo rm -rf /custom/vendor/here/

	Update custom bits: sudo mv /tmp/system/custom/vendor/here /custom/vendor

	Reboot

	After boot, check you have these three processes running on top of location-service:
	slpgwd

	posclientd

	ubuntu-espoo-service

	Make sure SIM is unlocked and attached to the network (has some reliable signal) and that WiFi is turned on.

	Install OSMTouch app

	Run OSMTouch app, hit the position button every other second until you get a blue circle showing your current location;

Connectivity API

For integration of network-based positioning providers, the location
service offers a connectivity API that provides access to wifi and
cell measurements as well as information on the current overall
connectivity status of the device. Please execute the following
commands on a newly flashed device with a writable image:

	sudo apt-get update && sudo apt-get build-dep location-service && sudo apt-get install libubuntu-location-service-dev ubuntu-location-service-examples

	mkdir /tmp/build && cd /tmp/build && cmake /usr/share/ubuntu-location-service/examples/standalone/connectivity/ && make

	GLOG_logtostderr=1 ./connectivity

Verify that the output looks similar to:

phablet@ubuntu-phablet:/tmp/build$./connectivity
Is wifi enabled: true
Is wifi hw enabled: true
Is wwan enabled: false
Is wwan hw enabled: true
umts(mcc: 262, mnc: 2, lac: 5313, id: 131948771, asu: 7)
(bssid: BC:F2:AF:AF:19:A2, ssid: devolo-bcf2afaf19a2, last seen: 1408955086, mode: Mode::infrastructure, frequency: 2462, strength: 72)
(bssid: 00:22:3F:35:43:58, ssid: JustAnotherWLAN, last seen: 1408955086, mode: Mode::infrastructure, frequency: 2412, strength: 24)
(bssid: 82:C7:A6:40:8C:4E, ssid: EasyBox-44D054, last seen: 1408955206, mode: Mode::infrastructure, frequency: 2417, strength: 17)
(bssid: 00:24:01:B8:32:8D, ssid: gra, last seen: 1408955086, mode: Mode::infrastructure, frequency: 2412, strength: 12)
(bssid: C0:25:06:3C:28:22, ssid: FRITZ!Box 6360 Cable, last seen: 1408954966, mode: Mode::infrastructure, frequency: 2412, strength: 17)
(bssid: 00:1C:4A:A5:B7:59, ssid: FRITZ!Box Fon WLAN 7170, last seen: 1408954966, mode: Mode::infrastructure, frequency: 2437, strength: 10)
Last seen changed for wifi (bssid: BC:F2:AF:AF:19:A2, ssid: devolo-bcf2afaf19a2, last seen: 1408955257, mode: Mode::infrastructure, frequency: 2462, strength: 72)
Last seen changed for wifi (bssid: 00:22:3F:35:43:58, ssid: JustAnotherWLAN, last seen: 1408955257, mode: Mode::infrastructure, frequency: 2412, strength: 24)
Signal strength changed for wifi: (bssid: BC:F2:AF:AF:19:A2, ssid: devolo-bcf2afaf19a2, last seen: 1408955257, mode: Mode::infrastructure, frequency: 2462, strength: 73)

Trust Store Integration

Please note that we are assuming a freshly wiped system for testing
here. If you cannot fulfill that pre-condition, please run rm -rf /home/phablet/.local/share/UbuntuLocationService && sudo shutdown -r prior to running the
tests:

Unconfined

	Open the browser, go to maps.google.com

	Observe the in-browser dialog asking for granting access to location.

Confined Web-App

	Open the Nokia Here web app, observe the trust dialog appearing.

Confined Application

	Open osmtouch and observe the osmtouch surface sliding up, presenting you with a trust dialog.

Tips’n’Tricks

Mark HERE license as accepted from cmdline

sudo LC_ALL=C gdbus call --system --dest org.freedesktop.Accounts --object-path /org/freedesktop/Accounts/User32011 --method org.freedesktop.DBus.Properties.Set com.ubuntu.location.providers.here.AccountsService LicenseAccepted '<true>'

Force startup after ofono and NM are started

This is a workaround to get connectivity API to collect; mount your
system read-write and edit
/etc/init/ubuntu-location-provider-here-slpgwd.conf:

sudo mount -o remount,rw /
sudo vi /etc/init/ubuntu-location-provider-here-slpgwd.conf

change: start on started dbus and (started ofono or started network-manager)
to: start on started dbus and started ofono and started network-manager

sudo mount -o remount,ro /
sync
sudo reboot

 _static/comment-close.png

_static/comment-bright.png

_images/LocationServiceHighLevel.png
<maintains> <maintains>
Provider Configuration
<uses> <extends>
<creates> <maintains>
Session Configuration

_static/comment.png

_static/minus.png

_static/file.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		Welcome to locationd's documentation!

 		Introduction

 		Vocabulary

 		Architectural Overview

 		Privacy & Access Control

 		CLI

 		Snap-Specific Command Names

 		Testing Scenarios

 		API

 		Hacking

 		Building the code

 		Running the tests

 		Coverage

 		Code style

 		Thread and address sanitizer

 		Updating symbols file

 		ABI compliance test

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

